Self-consistent field convergence for proteins: a comparison of full and localized-molecular-orbital schemes.
نویسندگان
چکیده
Proteins in the gas phase present an extreme (and unrealistic) challenge for self-consistent-field iteration schemes because their ionized groups are very strong electron donors or acceptors, depending on their formal charge. This means that gas-phase proteins have a very small band gap but that their frontier orbitals are localized compared to "normal" conjugated semiconductors. The frontier orbitals are thus likely to be separated in space so that they are close to, but not quite, orthogonal during the SCF iterations. We report full SCF calculations using the massively parallel EMPIRE code and linear scaling localized-molecular-orbital (LMO) calculations using Mopac2009. The LMO procedure can lead to artificially over-polarized wavefunctions in gas-phase proteins. The full SCF iteration procedure can be very slow to converge because many cycles are needed to overcome the over-polarization by inductive charge shifts. Example molecules have been constructed to demonstrate this behavior. The two approaches give identical results if solvent effects are included.
منابع مشابه
KINETIC STUDIES USING SEMI-EMPIRICAL SELF- CONSISTENT FIELD (SCF) MOLECULAR ORBITAL (MO) METHOD: PARTI. A MODIFIED NEGLECT OF DIATOMIC OVERLAP (MNDO) STUDY OF THE PYROLYSIS OF ETHYL VINYL ETHER
Using a computer code called MOPAC, an acronym for a general Molecular Orbital Package (Quantum Chemistry Programme Exchange (QCPE) Programme No. 455), the geometries and heats of formation of the reactant, the products and the trdnsition state were computed by the MNDO semi- empiricalself consistent field (SCF) method for the pyrolysis of ethyl vinyl ether. ((Force))calculation on the reac...
متن کاملStochastic Multiconfigurational Self-Consistent Field Theory.
The multiconfigurational self-consistent field theory is considered the standard starting point for almost all multireference approaches required for strongly correlated molecular problems. The limitation of the approach is generally given by the number of strongly correlated orbitals in the molecule, since its cost will grow exponentially with this number. We present a new multiconfigurational...
متن کاملKINETIC STUDIES USING SEMI-EMPIRICAL SELF- CONSISTENT FIELD (SCF) MOLECULAR ORBITAL (MO) METHOD: PART I1 [I] A MODIFIED NEGLECT OFDIATOMIC OVERLAP (MNDO) STUDY OF THE PYROLYSES OF CHLOROETHYL VINYL ETHERS
The effect of monochloro and dichloro substitution into the ethyl portion on the pyrolysis of ethyl vinyl ether has been studied. This involved four possible monosubstituted derivatives and six disubstituted derivatives. For the monochloro derivatives, B- chloro substitution enhanced the rate constant while a- chloro substitution depressed it noticeably. For the dichloro derivatives, substi...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملParallel, linear-scaling building-block and embedding method based on localized orbitals and orbital-specific basis sets.
We present a linear scaling method for the energy minimization step of semiempirical and first-principles Hartree-Fock and Kohn-Sham calculations. It is based on the self-consistent calculation of the optimum localized orbitals of any localization method of choice and on the use of orbital-specific basis sets. The full set of localized orbitals of a large molecule is seen as an orbital mosaic w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular modeling
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2014